SPECIFICATIONS

CUSTOMER : _	
SAMPLE CODE:	GFG128064E-FPBE-01
DRAWING NO. :	
DATE :	2010.01.12
CERTIFICATION	I: ROHS

Custom	ner Sign	Sales Sign	Approved By	Prepared By

Revision Record

Data(y/m/d)	Ver.	Description	Note	page
2010.01.12	00	New		
2011.01.18	01	背光 LED 有改料		

CONTENTS

1.	SCO	PE	 4
2.	PRO	DUCT SPECIFICATIONS	 4
	2.1	General	 4
	2.2	Mechanical Characteristics	 4
	2.3	Absolute Maximum Ratings	 5
	2.4	Electrical Characteristics	 5
	2.5	Optical Characteristics Absolute maximum ratings	 6
	2.6	Optical Characteristics	 7
	2.7	LED Back-light Characteristics	 8
3.	REL	IABILITY	 9

4.	OPERATING INSTRUCTIONS	 10
	4.1 Input signal Function	 10
	4.2 Voltage Generator Circuit	 12
	4.3 Timing Diagram	 14
5.	NOTES	 16
6.	OPERATION PRECAUTIONS	 16
7.	LCM DIMENSIONS	 17

1. SCOPE

This specification covers the engineering requirements for the GFG128064E-FPBE-01 liquid crystal module.

2. PRODUCT SPECIFICATIONS

- 2.1 General
 - 128 \$64 dot matrix LCD
 - FSTN, Positive mode LCD panel
 - Transflective, Wide temperature type
 - 6 o'clock
 - Back light: Edge LED (ORANGE)
 - Multiplexing driving: 1/65duty, 1/9bias
 - Conteroller IC NT7534H-BDT

2.2 Mechanical Characteristics

Item	Characteristic
Dot configuration	128 �64
Dot dimensions(mm)	0.225 �0.285
Dot spacing (mm)	0.24 \$0.3
Module dimensions (Horizontal ❖ Vertical ❖Thickness, mm)	40.5 ♦34.35 ♦4.8 max.
Viewing area (Horizontal ❖ Vertical, mm)	33.8 \$22.2.
Active area (Horizontal &Vertical, mm)	30.705 \$19.185

2.3 Absolute
Maximum
Ratings
(Without LED

back-light)

Characteristic	Symbol	Unit	Value
Operating Voltage (logic)	$ m V_{DD}$	V	-0.3 to +4.0
Input Voltage	$\mathbf{V}_{\mathbf{IN}}$	V	-0.3 to V _{DD} +0.3

Note 1: Referenced to $\overline{V_{SS}}=0V$

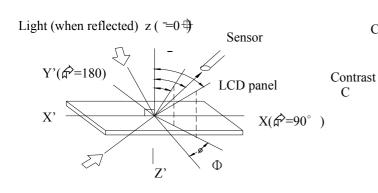
2.4 Electrical Characteristics (Without LED back-light)

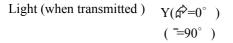
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
VDD VDD3	Operating Voltage	1.8	-	3.6	٧	
		1.8	-	3.6		2X, 3X boosting
VDD2	Operating Voltage	1.8	-	3.3	٧	4X boosting
		1.8	-	2.8		5X boosting
VOUT	Booster Voltage	6.0	-	14.2	V	
V0	Voltage Regulator Operating Voltage	4.0	-	14.2	٧	
VREG	Reference Voltage	2.04	2.10	2.16	٧	Ta = 25°C, -0.05%/°C
		-	20	35	μΑ	VDD = 3V, V0 = 11V, built-in boosting power supply off, display on, display data = checker and no access, Ta = 25°C
IDD	Current Consumption	-	90	160	μА	VDD, VDD2 = 3V, V0 = 11V, 4X built-in boosting power supply, display on, display data = checker and no access, temperature gradient is -0.05%/ °C, Ta = 25°C, V0 voltage internal resistor is used, /HPM = 1 (normal power mode).
		-	150	255	μА	VDD, VDD2 = 3V, V0 = 11V, 4X built-in boosting power supply, display on, display data = checker and no access, temperature gradient is -0.05%/ °C, Ta = 25°C, V0 voltage internal resistor is used, /HPM = 0 (high power mode).

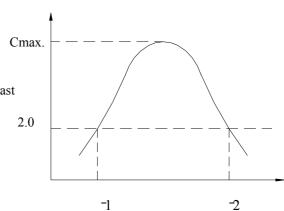
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition		
ISP	Sleep Mode Current Consumption	-	0.01	5	μΑ	During slee	p, Ta = 25°C	
ISB	Standby Mode Current Consumption	-	4	8	μΑ	During stand	dby, Ta = 25°C	
VIHC	High-Level Input Voltage	0.8 x VDD	ı	VDD	٧		, /RD (E), /WR (R/W), /CS1, CL, FR, M/S, C86, P/S, /DOF,	
VILC	Low-Level Input Voltage	VSS	ı	0.2 x VDD	٧	/RES, IRS a		
VOHC	High-Level Output Voltage	0.8 x VDD	ı	VDD	>	IOH = -0.5m and CL)	nA (D0 - D7, FR, FRS, /DOF,	
VOLC	Low -Level Output Voltage	VDD	ı	0.2 x VDD	٧	IOL = 0.5mA (D0 - D7, FR, FRS, /DOF, and CL)		
ILI	Input Leakage Current	-1.0	-	1.0	μΑ	Vin = VDD or VSS (A0, /RD (E), /WR (R/W), /CS1, CS2, CLS, M/S, C86, P/S, IRS and /RES)		
IHZ	HZ Leakage Current	-3.0	1	3.0	μΑ	When the D in high impe	0 - D7, FR, CL, and /DOF are edance	
RON1	LCD Driver ON Resistance	-	2.0	3.5	ΚΩ	V0 = 11.0V	Ta = 25°C, These are the resistance values for when a 0.1V voltage is applied between	
RON2	LCD Driver ON Resistance	,	3.2	5.4	ΚΩ	V0 = 8.0V	the output terminals SEGn or COMn and the various powe supply terminal (V0, V1, V2, V3, V4)	
CIN	Input Pad Capacity	-	5.0	8.0	рF	Ta = 25°C, f	f = 1MHz	
fFRM	Frame Frequency	78.0	80.5	83.0	Hz	fOSC = 31.4 KHz, 1/65duty VDD = 1.8~3.6V		
IFIXIVI	Frame Frequency	65.3	67.4	69.5	Hz	fOSC = 26.3 VDD = 1.8~	3 KHz, 1/65duty 3.6V	

Notes: 1. Voltages $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS2$ must always be satisfied.

2.5 Optical Characteristics Absolute maximum ratings

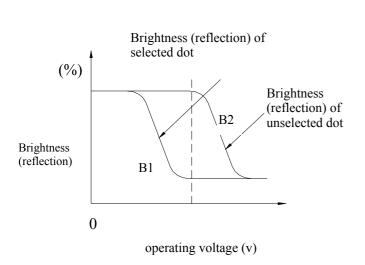

Item	Symbol	Rating	Unit
Operating temperature range	Тор	-30~80	ФC
Storage temperature range	Tst	-30~80	ФC


2.6 Optical Characteristics

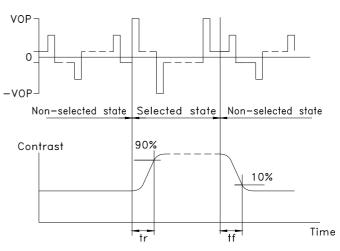

Item	Symbol	Conditions	Min.	Тур.	Max	Reference
Driving voltage	Vop=VDD-VO			9.2		
Viewing angle	-	C≥2.0,♠=0€€	30⊕		-	Notes 1 & 2
Contrast	С	-=5 \$ \$ \$=0 ⊕	3.0		1	Note 3
Response time(rise)	ton	-=5 \$ \$ =0 ⊕			198ms	Note 4
Response time(fall)	toff	-=5 \$ \$ =0 ⊕	-		176ms	Note 4

Note 1: Definition of angles ⁻and ♠

Note 2: Definition of viewing angles ¬1 and ♠2


viewing angle $\neg(\Phi fixed)$

Note: Optimum viewing angle with the naked eye and viewing angle -at Cmax. Above are not always the same


Note 3: Definition of contrast C

Brightness (reflection) of unselected dot (B2)

C = _____ Brightness (reflection) of selected dot (B1)

Note 4: Definition of response time

Note: Measured with a transmissive LCD panel which is displayed 1 cm²

 V_{OPR} : Operating voltage f_{FRM} : Frame frequency

t_{ON}: Response time (rise) t_{OFF}: Response time (fall)

2.7 LED Back-light Characteristics

2.7.1 Electrical / optical specifications

 $Ta = 25 \oplus \mathbb{C}$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward voltage	V_{f}	If=10mA, ORANGE	-	10.9	1	V
LED *Luminous Intensity	I_{V}	If=10mA, ORANGE		80		Cd/m2
Peak wave length	λр	If=10mA, ORANGE	585	-	589	
Reverse Current	I_R	VR=5V, ORANGE			0.1	mA

Note: *
Measured at
the bare
LED backlight unit.

2.7.2 LED

Maximum Operating Range

Item	Symbol	ORANGE	Unit
Power Dissipation	P_{AD}	109	mW
Forward Current	I_{F}	10	mA
Reverse Voltage	V_{R}	5	V

3. RELIABILITY

3.1 Reliability

Test item	Test condition	Evaluation and assessment
-----------	----------------	---------------------------

Operation at high temperature and humidity	40 °C ⊕2 °C 90%RH for 500hours	No abnormalities in functions* and appearance**
Operation at high temperature	60°C €2°C for 500 hours	No abnormalities in functions* and appearance**
Heat shock	-20 \$\infty\$ +60 °C Left for 1 hour at each temperature, transition time 5 min, repeated 10times	No abnormalities in functions* and appearance**
Low temperature	-20⊕2 °C for 500 hours	No abnormalities in functions* and appearance**
Vibration	Sweep for 1 min at 10 Hz, 55Hz, 10Hz, amplitude 1.5mm 2 hrs each in the X,Y and Z directions	No abnormalities in functions* and appearance**
Drop shock	Dropped onto a board from a height of 10cm	No abnormalities in functions* and appearance**

^{*} Dissipation current, contrast and display functions

3.2 Liquid crystal panel service life 100,000 hours minimum at 25 °C \$\displays 10 \cdot \cdot \cdot \cdot 10 \cdot \cdot \cdot \cdot 10 \cdot \cdot \cdot \cdot \cdot 10 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 10 \cdot \cdot \cdot \cdot \cdot \cdot 10 \cdot 10 \cdot \

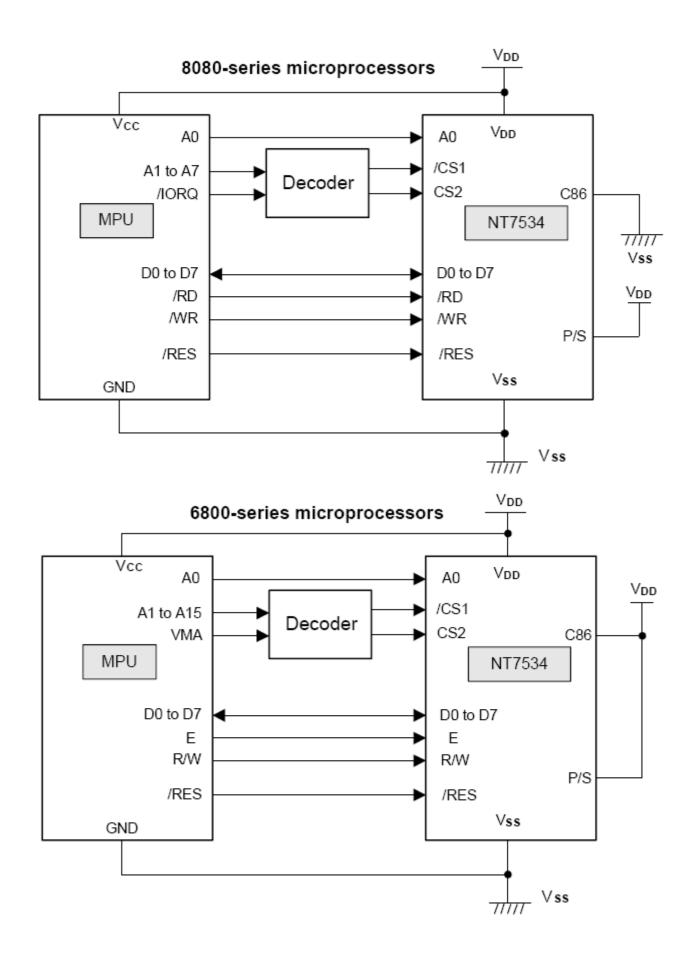
- 3.3 definition of panel service life
 - Contrast becomes 30% of initial value
 - Current consumption becomes three times higher than initial value
 - Remarkable alignment deterioration occurs in LCD cell layer
 - Unusual operation occurs in display functions

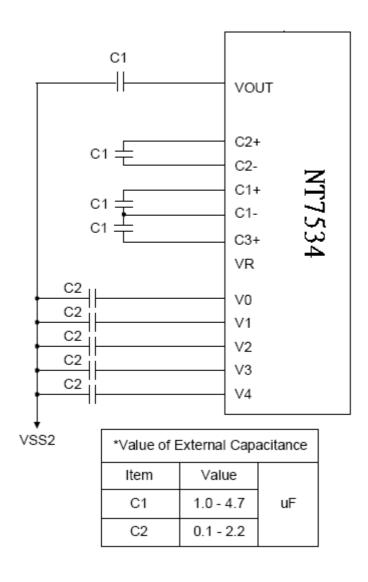
4. OPERATING INSTRUCTIONS

4.1 Input signal Function

Pin no.	Symbol	Function
1	VDD	Power supply input.

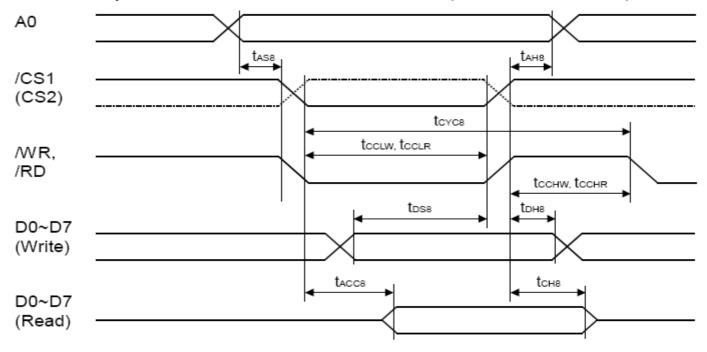
^{**} Polarizing filter deterioration, other appearance defects


2	C86	Тт	his is the MF	Ol Linterfac	e switch to	rminal			
2	C80		86 = "H": 68						
			86 = "L": 808						
3	VSS	G	round.						
4	V0	L	CD driver su	pplies volt	ages. The	voltage de	termined b	y the LCD cell is	
5	V4	┙		• •	_	•		on amplifier for	
6	V3	l a	pplication. V	oltages sh	ould be ac	cording to	the followin	ng relationship:	
		- V	V0≥V1≥V2≥V3≥V4≥VSS						
7 8	V2 V1	-	When the on-chip operating power circuit is on, the following voltages are						
8	VI	1	• •	-	•	power cire	cuit. Voltag	ge selection is performed	
		by the LCD Bias Set command.							
		١ī	LCD bias V1 V2 V3 V4						
			1/4 bias	3/4\/0	2/4\/0	2/4\/0	1/4∨0		
			1/5 bias	4/5∨0	3/5\/0	2/5\/0	1/5\/0		
			1/6 bias	5/6\/0	4/6\/0	2/6\/0	1/6\/0		
			1/7 bias 6/7V0 5/7V0 2/7V0 1/7V0						
			1/8 bias	7/8\/0	6/8\/0	2/8\/0	1/8∨0		
9	CAP2-	Til	1/9 bias	8/9\/0	7/9\/0	2/9\/0	1/9\/0		
10	CAP2+	Tc'	apacitor 2+	pad for inte	ernal DC/D	C voltage	converter.	1	
11	CAP1+	С	apacitor 1+	pad for inte	ernal DC/D	C voltage	converter.		
12	CAP1-	С	apacitor 1-pa	ad for inter	nal DC/DC	coltage c	onverter.		
13	CAP3+	С	apacitor 3+	pad for inte	ernal DC/D	C voltage	converter.		
14	VOUT	D	C/DC voltag	e converte	er output				
15	VSS	G	round.						
16	D7	Т	his is an 8-b	oit bi-direct	tional data	bus that o	connects to	o an 8-bit	
17	D6	0	r 16-bit stan	dard MPU	data bus				
18	D5	1							
19	D4	1							
20	D3	1							
21	D2	1							
22	D1	1							
23	D0								
24	RD(E)	W	/hen connec	ted to an 8	8080 MPU,	it is active	LOW. This	s pad is connected to	
		th	the /RD signal of the 8080MPU, and the						
		N	NT7534 data bus is in an output status when this signal is "L".						
		1	/hen connec						
		This is used as an enable clock input of the 6800 series							

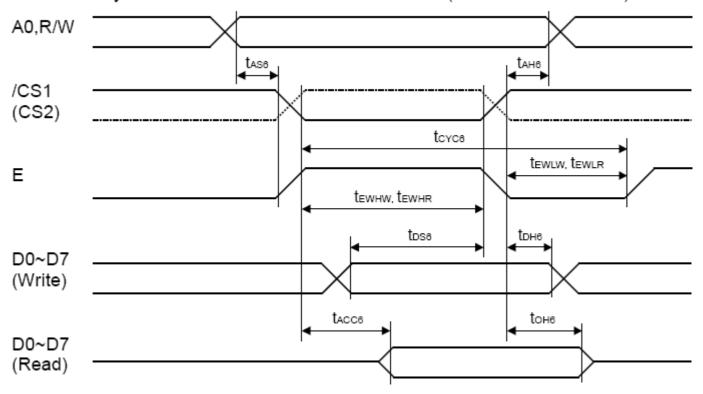

		MPU				
25	WR	When connected to an 8080 MPU, this is active LOW. This				
		terminal connects to the 8080 MPU /WR signal. The signals				
		on the data bus are latched at the rising edge of the /WR				
		signal.				
		When connected to a 6800 Series MPU, this is the read/write				
		control signal input terminal.				
		When R/W = "H": Read				
		When R/W = "L": Write				
26	A0	This is connected to the least significant bit of the normal MPU				
		address bus, and it determines whether the data bits are data				
		or a command.				
		A0 = "H": Indicate that D0 to D7 are display data				
		A0 = "L": Indicates that D0 to D7 are control data				
27	RES	When RES is set to "L", the settings are initialized. The reset operation is				
		performed				
		by the /RES signal level				
28	CS	This is the chip select signal. When /CS1="L" and CS2="H",				
		then the chip select becomes active, and data/command I/O is				
		enabled.				

C86	Туре	/CS1	CS2	Α0	/RD	WR	D0 to D7
Н	6800 microprocessor bus	/CS1	CS2	A0	E	R/W	D0 to D7
L	8080 microprocessor bus	/CS1	CS2	A0	/RD	WR	D0 to D7

Common	6800 processor	8080 pr	ocessor	Function	
A0	(R/W)	/RD	/WR		
1	1	0	1	Reads display data	
1	0	1	0	Writes display data	
0	1	0	1	Reads status	
0	0	1	0	Writes control data in internal register. (Command)	


4.2 Voltage Generator Circuit

4.3 Timing Diagram


System Buses Read/Write Characteristics (for 8080 Series MPU)

 $(VDD = 2.7 \sim 3.6V, Ta = -40 \sim +85^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
taн8	Address hold time	0	-	-	ns	A0
tas8	Address setup time	0	-	-	ns	AU
tcyc8	System cycle time	240	-	-	ns	
tccLw	Control low pulse width (write)	120	-	-	ns	WR
tcclr	Control low pulse width (read)	120	-	-	ns	/RD
tсснw	Control high pulse width (write)	100	-	-	ns	WR
tcchr	Control high pulse width (read)	100	-	-	ns	/RD
tos8	Data setup time	40	-	-	ns	D0~D7
tонв	Data hold time	10	-	-	ns	D0~D1
tacc8	/RD access time	-	-	140	ns	D0~D7, CL = 100pF
tснв	Output disable time	5	-	50	ns	- DO-D7, CL = 100pF

System Buses Read/Write Characteristics (for 6800 Series MPU)

 $(VDD = 2.7 \sim 3.6V, Ta = -40 \sim +85^{\circ}C)$

				\		
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
taн6	Address hold time	0	-	-	ns	A0, R/W
tas6	Address setup time	0	-	-	ns	A0, 1777
tcyc6	System cycle time	240	-	-	ns	
tewnw	Control low pulse width (write)	120	-	-	ns	E
tewnr	Control low pulse width (read)	120	-	-	ns	E
tewLw	Control high pulse width (write)	100	-	-	ns	E
tewLR	Control high pulse width (read)	100	-	-	ns	E
tos6	Data setup time	40	-	-	ns	D0~D7
tDH6	Data hold time	10	-	-	ns	D0~D1
tacc6	/RD access time	-	-	140	ns	D0~D7
toн6	Output disable time	5	-	50	ns	CL = 100pF

5. NOTES

Safety

• If the LCD panel breaks, be careful not to get the liquid crystal in your mouth. If the liquid crystal touches

your skin or clothes, wash it off immediately using soap and plenty of water.

Handling

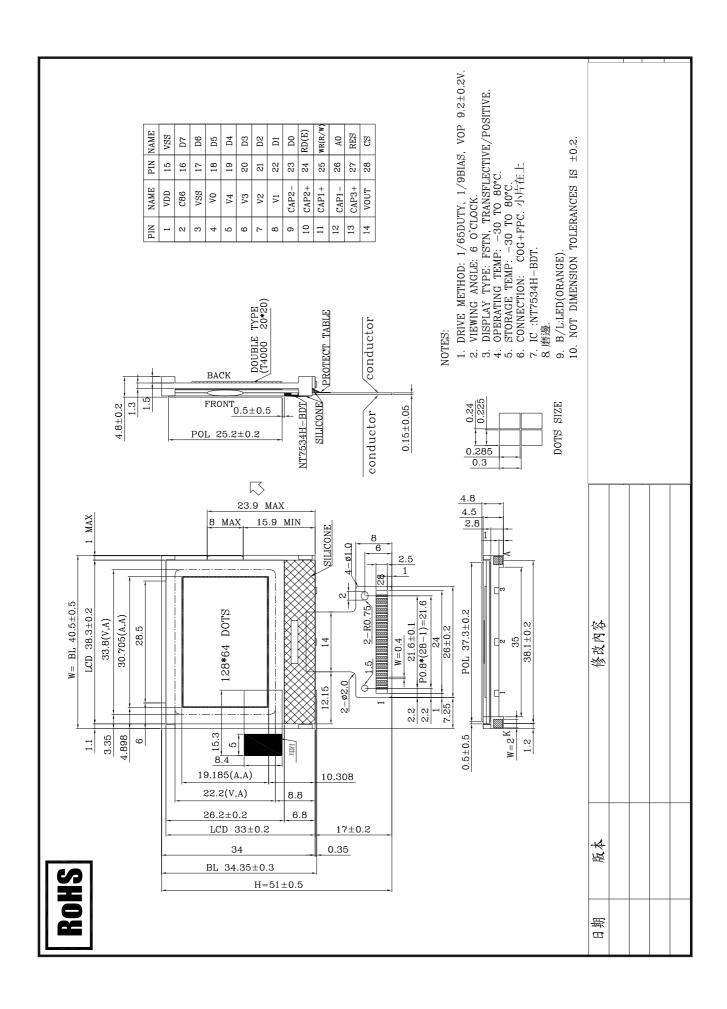
- Avoid static electricity as this can damage the CMOS LSI.
- The LCD panel is plate glass; do not hit or crush it.
- Do not remove the panel or frame from the module.
- The polarizing plate of the display is very fragile; handle it very carefully

Mounting and Design

- Mount the module by using the specified mounting part and holes.
- To protect the module from external pressure, leave a small gap by placing transparent plates (e.g. acrylic or glass) on the display surface, frame, and polarizing plate
- Design the system so that no input signal is given unless the power-supply voltage is applied.
- Keep the module dry. Avoid condensation, otherwise the transparent electrodes may break.

Storage

- Store the module in a dark place where the temperature is 25 °C \$\phi 10 °C and the humidity below 65% RH.
- Do not store the module near organic solvents or corrosive gases.
- Do not crush, shake, or jolt the module (including accessories).


Cleaning

- Do not wipe the polarizing plate with a dry cloth, as it may scratch the surface.
- Wipe the module gently with soft cloth soaked with a petroleum benzine.
- Do not use ketonic solvents (ketone and acetoe) or aromatic solvents (toluene and xylene), as they may damage the polarizing plate.

6. OPERATION PRECAUTIONS

Any changes that need to be made in this specification or any problems arising from it will be dealt with quickly by discussion between both companies.

7. LCM Dimension

