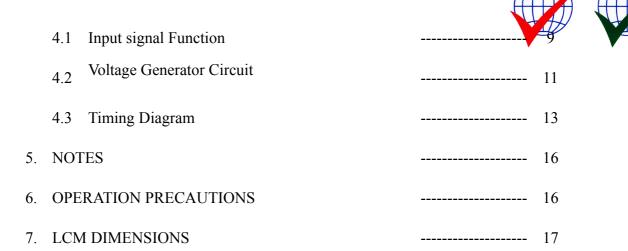


SPECIFICATIONS

CUSTOMER	₹ :
SAMPLE CO	ODE: GFG128064I-YPFE-04
DRAWING I	NO. :
DATE	: <u>2011.04.29</u>
CERTIFIC	ATION: ROHS


Sales Sign	Approved By	Prepared By
	Sales Sign	Sales Sign Approved By

Revision Record

Data(y/m/d)	Ver.	Description	Note	page
2011.04.29	00	New		17

CONTENTS

1.	SCO	PE	 4
2.	PRO	DUCT SPECIFICATIONS	 4
	2.1	General	 4
	2.2	Mechanical Characteristics	 4
	2.3	Absolute Maximum Ratings	 5
	2.4	Electrical Characteristics	 5
	2.5	Optical Characteristics Absolute maximum ratings	 5
	2.6	Optical Characteristics	 6
	2.7	LED Back-light Characteristics	 7
3.	REL	IABILITY	 8
4.	OPE	RATING INSTRUCTIONS	 9

1. SCOPE

This specification covers the engineering requirements for the GFG128064I-YPFE-04 liquid crystal module.

2. PRODUCT SPECIFICATIONS

2.1 General

- 128 �64 dot matrix LCD
- STN (Y/G), Positive mode LCD panel
- Transflective, Wide temperature type
- 6 o'clock
- Back light: Edge LED (white)
- Multiplexing driving: 1/65duty, 1/9bias

Item	Characteristic
Dot configuration	128 �64
Dot dimensions(mm)	0.48 �0.48
Dot spacing (mm)	0.52 �0.52
Module dimensions (Horizontal ❖ Vertical ❖Thickness, mm)	80
Viewing area (Horizontal ❖ Vertical, mm)	70.7 \$38.8
Active area (Horizontal �Vertical,	66.52 \$33.24

- Conteroller IC ST7565
- 2.2 Mechanical Characteristics

2.3 Absolute Maximum Ratings (Without LED back-light)

Characteristic	Symbol	Unit	Value
Operating Voltage (logic)	$ m V_{DD}$	V	-0.3 to +5.0
Input Voltage	V_{IN}	V	-0.3 to V _{DD} +0.3

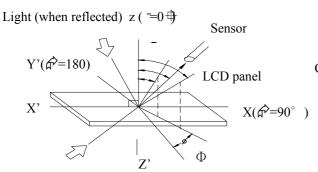
Note 1: Referenced to V_{SS}=0V

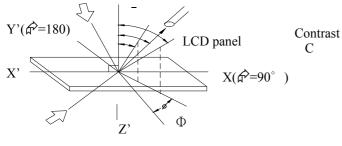
2.4 Electrical Characteristics (Without LED back-light)

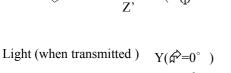
Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Operating	V _{DD} -V _{SS}		3.0	3.3	3.6	V
Voltage(logic)						
Input Voltage	V_{IH}		$0.8V_{DD}$		V_{DD}	V
	V_{IL}		$\mathbf{V}_{\mathbf{s}\mathbf{s}}$		0.2V _{DD}	
Output Voltage	V_{OH}	I _{OH} =-0.1mA	$0.8V_{DD}$		V_{DD}	V
	$ m V_{HL}$	I _{OL} =0.1mA	$\mathbf{V}_{\mathbf{s}\mathbf{s}}$		$0.2V_{DD}$	
Current	I_{DD}	$V_{IN}=V_{DD}$		0.05	1	mA
Consumption						

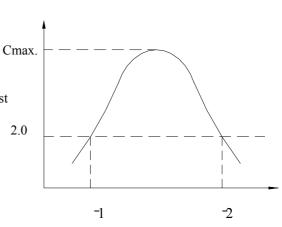
2.5 Optical Characteristics Absolute maximum ratings

Item	Symbol	Rating	Unit
Operating temperature range	Тор	-20~70	#C
Storage temperature range	Tst	-30~80	# С

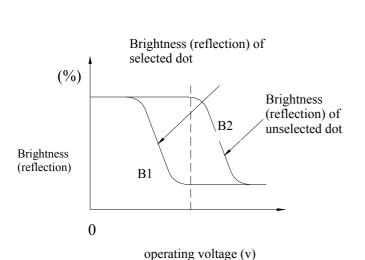

2.6 Optical Characteristics


1/65 duty, 1/9bias, Vop=10.0V, Ta=25°C

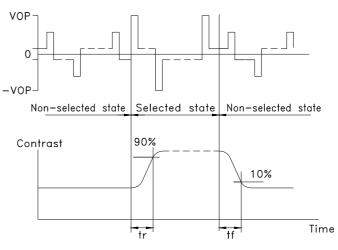

Item	Symbol	Conditions	Min.	Тур.	Max	Reference
Driving voltage	Vop=VDD-VO		9.8	10.0	10.2	
Viewing angle	-	C≥2.0,♠=0€€	30⊕	-		Notes 1 & 2
Contrast	С	-=5∯∱=0⊕	3.0		-	Note 3
Response time(rise)	ton	-=5 \$ \$\div \div =0 \div	-		198ms	Note 4
Response time(fall)	toff	-=5⊕⇔=0⊕	-	-	176ms	Note 4


Note 1: Definition of angles ⁻and ♠

Note 2: Definition of viewing angles ¬1 and ♠2


viewing angle $\neg(\Phi fixed)$

Note: Optimum viewing angle with the naked eye and viewing angle at Cmax. Above are not always the same


Note 3: Definition of contrast C

Brightness (reflection) of unselected dot (B2)

Brightness (reflection) of selected dot (B1)

Note 4: Definition of response time

Note: Measured with a transmissive LCD panel which is displayed 1 cm²

 V_{OPR} : Operating voltage f_{FRM} : Frame frequency

 t_{ON} : Response time (rise) t_{OFF} : Response time (fall)

2.7 LED Back-light Characteristics

2.7.1 Electrical / optical specifications

Ta = 25 €€

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Forward voltage	V_{f}	If=60mA, White	2.9	3.2	3.6	V
LED *Luminous Intensity	I_{V}	If=60mA, White		150		Cd/m2
Chromaticity Coordinate	X	If=60mA, White	0.26	0.31	0.36	
	у		0.25	0.32	0.37	
Reverse Current	I_R	VR=5V, White			0.1	mA

Note: * Measured at the bare LED back-light unit.

2.7.2 LED Maximum Operating Range

Item	Symbol	White	Unit
Power Dissipation	P_{AD}	288	mW
Forward Current	I_{F}	80	mA
Reverse Voltage	V_R	5	V

3. RELIABILITY

3.1 Reliability

Test item	Test condition	Evaluation and assessment
Operation at high temperature and humidity	40 °C ⊕2 °C 90%RH for 500hours	No abnormalities in functions* and appearance**
Operation at high temperature	60°C ⊕2°C for 500 hours	No abnormalities in functions* and appearance**
Heat shock	-20 \$\infty\$ +60 °C Left for 1 hour at each temperature, transition time 5 min, repeated 10times	No abnormalities in functions* and appearance**
Low temperature	-20⊕2 °C for 500 hours	No abnormalities in functions* and appearance**
Vibration	Sweep for 1 min at 10 Hz, 55Hz, 10Hz, amplitude 1.5mm 2 hrs each in the X,Y and Z directions	No abnormalities in functions* and appearance**
Drop shock	Dropped onto a board from a height of 10cm	No abnormalities in functions* and appearance**

^{*} Dissipation current, contrast and display functions

3.2 Liquid crystal panel service life

100,000 hours minimum at 25 °C ⊕10 °C

- 3.3 definition of panel service life
 - Contrast becomes 30% of initial value
 - Current consumption becomes three times higher than initial value
 - Remarkable alignment deterioration occurs in LCD cell layer
 - Unusual operation occurs in display functions

^{**} Polarizing filter deterioration, other appearance defects

4. OPERATING INSTRUCTIONS

4.1 Input signal Function

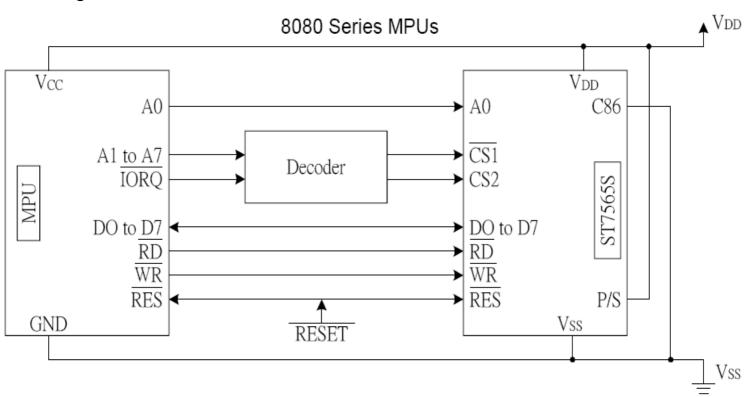
Pin No	Symbol	I/O	Function
1	/CS1	I	This is the chip select signal. When CS1 = "L" and CS2 = "H," then the
			chip select becomes active, and data/command I/O is enabled.
2	/RES	I	When RES is set to "L," the settings are initialized. The reset operation is
			performed by the RES signal level.
3	A0	I	This is connect to the least significant bit of the normal MPU address bus,
			and it determines whether the data bits are data or a command.
			A0 = "H": Indicates that D0 to D7 are display data.
			A0 = "L": Indicates that D0 to D7 are control data.
4	WR(R/W)	I	When connected to an 8080 MPU, this is active LOW.
			(R/W) This terminal connects to the 8080 MPU WR signal. The signals on
			the data bus are latched at the rising edge of the WR signal.
			When connected to a 6800 Series MPU:
			This is the read/write control signal input terminal.
			When R/W = "H": Read. When R/W = "L": Write.
5	RD(E)	I	When connected to an 8080 MPU, this is active LOW.
			(E) This pin is connected to the RD signal of the 8080 MPU, and the
			ST7565S series data bus is in an output status when this signal is "L".
			When connected to a 6800 Series MPU, this is active HIGH.
			This is the 6800 Series MPU enable clock input terminal.
6~13	D0 to D5	I/O	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit
	D6 (SCL)		standard MPU data bus. When the serial interface is selected (P/S = "L"):
	D7 (SI)		D0 to D5 are set to high impedance.
			D6 : the serial clock input (SCL) ; D7 : serial data input (SI) .
			When the chip select is not active, D0 to D7 are set to high impedance.
14	VDD	PS	Shared with the MPU power supply terminal Vcc.
15	VSS	PS	This is a 0V terminal connected to the system GND.
16	VOUT	0	DC/DC voltage converter. Connect a capacitor between this terminal and
			VSS.
17	CAP5-	0	DC/DC voltage converter. Connect a capacitor between this terminal and
			the CAP1+ terminal.
18	CAP3-	0	DC/DC voltage converter. Connect a capacitor between this terminal and
			the CAP1+ terminal.
19	CAP1+	0	DC/DC voltage converter. Connect a capacitor between this terminal and
			the CAP1- terminal.
20	CAP1-	0	DC/DC voltage converter. Connect a capacitor between this terminal and
			the CAP1+ terminal.

21	CAP2-	0	DC/D	C voltage conver	ter. Conne	ct a capacitor	between this t	erm nat and			
			the C	AP2+ terminal.			•	•			
22	CAP2+	0	DC/D	C voltage conver	ter. Conne	ct a capacitor	between this t	erminal and			
			the C	the CAP2- terminal.							
23	CAP4-	0	DC/D	C voltage conver	ter. Conne	ct a capacitor	between this t	erminal and			
			the C	AP2+ terminal.		·					
24	VRS	PS	This is	s the internal-out	out VREG p	ower supply f	or the LCD pow	er supply			
			voltag	voltage regulator.							
25~29	V1,V2,	PS	This i	s a multi-level po	wer supply	y for the liquid	d crystal drive.	The voltage			
	V3,V4, V5		Suppl	Supply applied is determined by the liquid crystal cell, and is changed							
			throug	through the use of a resistive voltage divided or through changing the							
			imped	dance using an	op.amp. V	oltage levels	are determine	d based on			
			VDD,	and must mainta	in the						
			relativ	ve magnitudes sh	own below.						
			VDD (= V0) ≧V1 ≧V2 ≧V3 ≧V4 ≧V5								
30	VR	I	Output voltage regulator terminal. Provides the voltage between VDD and								
			V5 through a resistive voltage divider.								
			IRS =	"L" : the V5 volta	ge regulato	or internal resi	stors are not us	ed .			
			IRS =	"H": the V5 volta	age regulate	or internal resi	stors are used				
31	C86	I	This is	s the MPU interfa	ce switch to	erminal.					
			C86 =	= "H": 6800 Series	MPU inter	face. C86 =	"L": 8080 MPU	interface.			
32	P/S	I	This is	s the parallel data	input/seria	al data input sv	witch terminal.				
			P/S =	"H": Parallel data	input. P	'S = "L": Seria	l data input.				
			The fo	ollowing applies d	epending o	on the P/S stat	us:				
			P/S	Data/Comman	Data	Read/Write	Serial Clock				
			"	A0	D0 to D7	RD, WR	X				
			H"								
			"L	A0	SI (D7)	Write only	SCL (D6)				
			"								
			When	P/S = "L", D0 to	D5 may be	"H", "L" or Op	en.				
			RD (E	and WR (R/W)	are fixed to	either "H" or	"L".				
			With	serial data input, I	t is imposs	ible read data	from RAM .				
33	/HPM	I	This i	is the power con	trol termina	al for the pov	ver supply circ	uit for liquid			
			crystal drive. /HPM = "H": Normal mode /HPM = "L": High power mode								
34	IRS	ı	This terminal selects the resistors for the V5 voltage level adjustment.								
			IRS =	IRS = "H": Use the internal resistors							
			IRS =	"L": Do not use t	he internal	resistors. The	V5 voltage leve	el is			
			regula	ated by an exte	rnal resisti	ve voltage di	ivider attached	to the VR			
			termir	nal							

Table 1

P/S	/CS1	CS2	A 0	/RD	/WR	C86	D 7	D6	D5~D0
H: Parallel Input	/CS1	CS2	A0	/RD	/WR	C86	D7	D6	D5~D0
L: Serial Input	/CS1	CS2	A0	_	_	_	SI	SCL	(HZ)

[&]quot;-" indicates fixed to either "H" or to "L"


Table 2

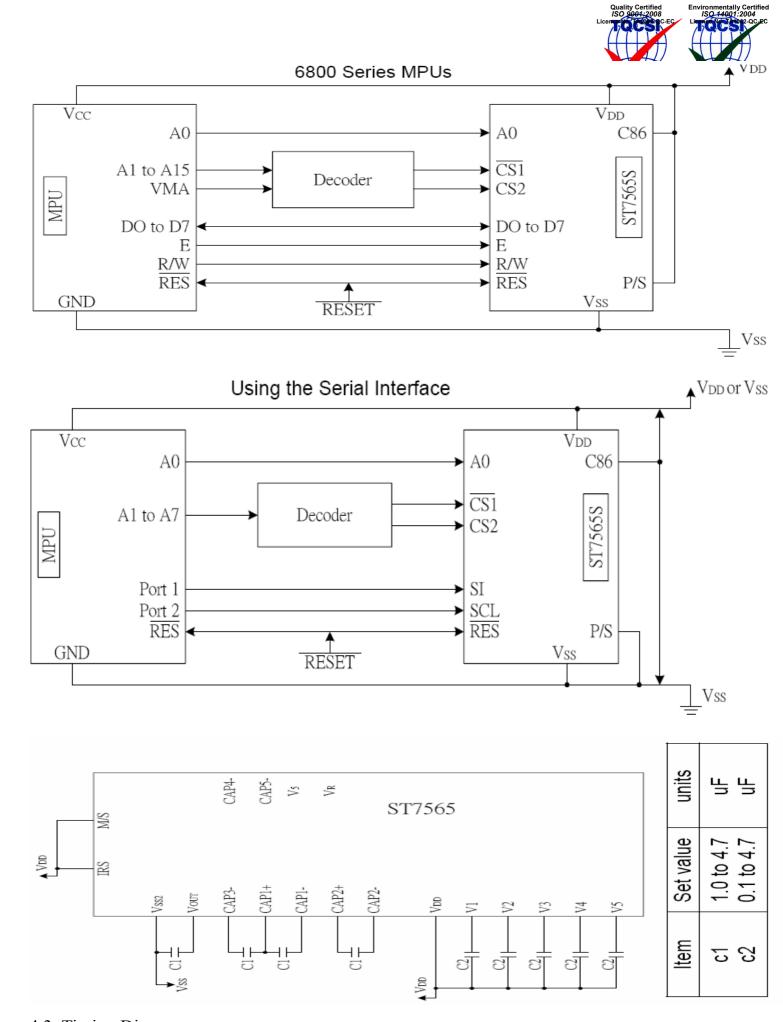
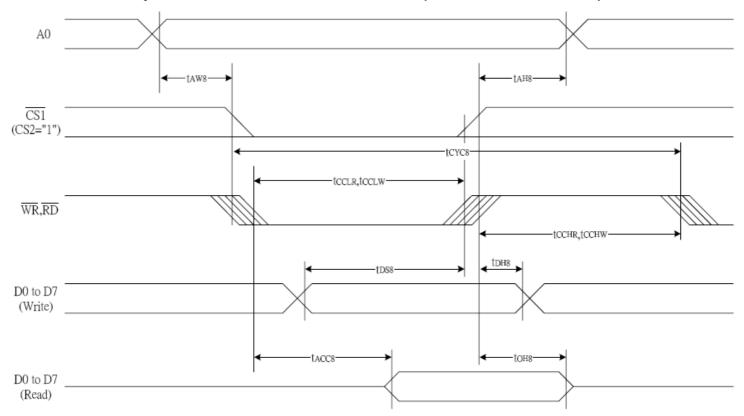

C86 (P/S=H)	/CS1	CS2	A 0	E(/RD)	R/W(/WR)	D7~D0
H: 6800 Series	/CS1	CS2	A0	E	R/W	D7~D0
L: 8080 Series	/CS1	CS2	A0	/RD	/WR	D7~D0

Table 3

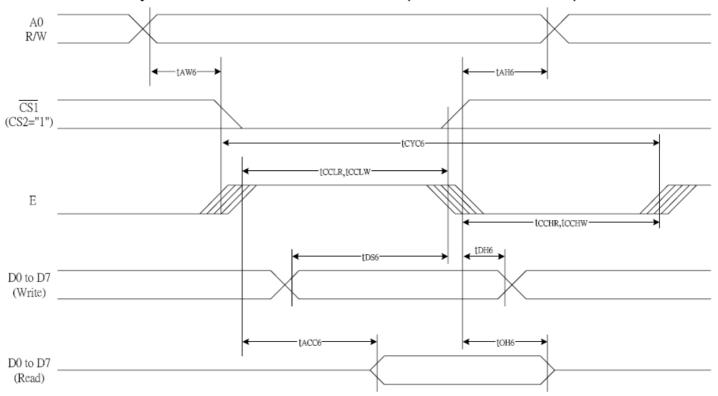
Shared	6800 S eries	8080	Series	Function
A 0	R/W	/RD	/WR	FullCuon
1	1	0	1	Reads the display data
1	0	1	0	Writes the display data
0	1	0	1	Status read
0	0	1	0	Write control data (command)

4.2 Voltage Generator Circuit



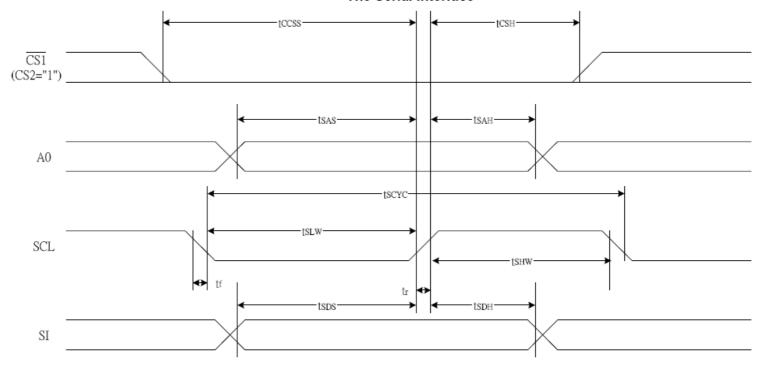
4.3 Timing Diagram

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)



Item	Signal	Symbol	Condition	Rating		Units
				Min	Max.	
Address hold time	A0	$t_{ m AH8}$		0		ns
Address setup time		$t_{\rm AW8}$		0	1	ns
System cycle time	A0	$t_{\rm CYC8}$		240		
Control L pulse width (WR)	WR	t_{CCLW}		80	1	ns
Control L pulse width (RD)	RD	$t_{\rm CCLR}$		140		ns
Control H pulse width (WR)	WR	$t_{\rm CCHW}$		80		ns
Control H pulse width (RD)	RD	$t_{\rm CCHR}$		80		ns
RD access time	D0 to	$t_{ m DS8}$		40		ns
Output disable time	D7	$t_{ m DH8}$		10		ns
		t_{ACC8}	C _L =100pF		70	ns
		$t_{ m OH8}$		5	50	ns

System Bus Read/Write Characteristics 2 (For the 6800 Series MPU)



Item	Signal	Symbol	Condition	Rating		Units
				Min	Max.	
Address hold time	A0	$t_{ m AH8}$		0		ns
Address setup time		$t_{\rm AW8}$		0		ns
System cycle time	A0	$t_{\rm CYC8}$		240		
Control L pulse width (WR)	WR	t_{CCLW}		80		ns
Control L pulse width (RD)	RD	t_{CCLR}		140		ns
Control H pulse width (WR)	WR	$t_{\rm CCHW}$		80		ns
Control H pulse width (RD)	RD	$t_{\rm CCHR}$		80		ns
RD access time	D0 to	$t_{ m DS8}$		40		ns
Output disable time	D7	$t_{ m DH8}$		10		ns
		t_{ACC8}	C _L =100pF		70	ns
		$t_{ m OH8}$		5	50	ns

The Serial Interface

Item	Signal	Symbol	Condition	Rating		Units
				Min	Max.	
Serial Clock Period	SCL	Tscyc		50		ns
SCL "H" pulse width		Tshw		25		ns
SCL "L" pulse width		TSLW		25		ns
Address setup time	A0	TSAS		20		ns
Address hold time		Tsah		10		ns
Data setup time	SI	Tsds		20		ns
Data hold time		TSDH		10		ns
CS-SCL time	CS	Tcss		20		ns
CS-SCL time		Tcsh		40		ns

5. NOTES

• If the LCD panel breaks, be careful not to get the liquid crystal in your mouth. If the liquid crystal truches your skin or clothes, wash it off immediately using soap and plenty of water.

Handling

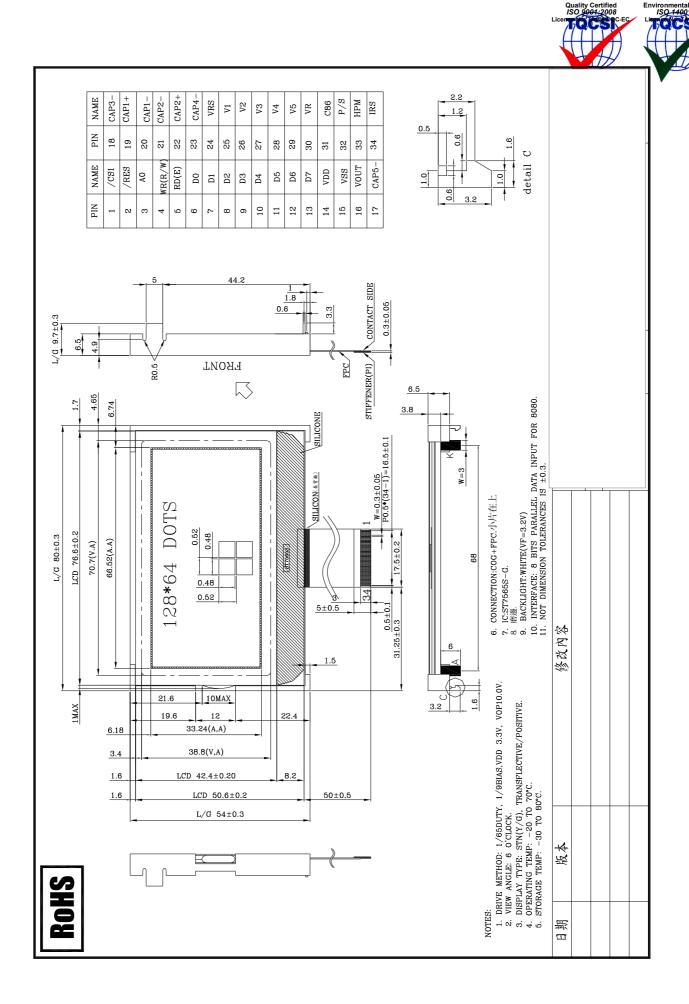
- Avoid static electricity as this can damage the CMOS LSI.
- The LCD panel is plate glass; do not hit or crush it.
- Do not remove the panel or frame from the module.
- The polarizing plate of the display is very fragile; handle it very carefully

Mounting and Design

- Mount the module by using the specified mounting part and holes.
- To protect the module from external pressure, leave a small gap by placing transparent plates (e.g. acrylic or glass) on the display surface, frame, and polarizing plate
- Design the system so that no input signal is given unless the power-supply voltage is applied.
- Keep the module dry. Avoid condensation, otherwise the transparent electrodes may break.

Storage

- Store the module in a dark place where the temperature is 25 °C \$\phi 10 °C and the humidity below 65% RH.
- Do not store the module near organic solvents or corrosive gases.
- Do not crush, shake, or jolt the module (including accessories).


Cleaning

- Do not wipe the polarizing plate with a dry cloth, as it may scratch the surface.
- Wipe the module gently with soft cloth soaked with a petroleum benzine.
- Do not use ketonic solvents (ketone and acetoe) or aromatic solvents (toluene and xylene), as they may damage the polarizing plate.

6. OPERATION PRECAUTIONS

Any changes that need to be made in this specification or any problems arising from it will be dealt with quickly by discussion between both companies.

7. LCM Dimension

