SPECIFICATIONS

CUSTOMER	R :		
SAMPLE C	ODE: GFC	802B-YPOE- J	IP_
DRAWING I	NO. :		
DATE	: 2010.01	.06	
CERTIFIC	ATION:	ROHS	
Customer Sign	Sales Sign	Approved By	Prepared Ry

Customer Sign	Sales Sign	Approved By	Prepared By

Revision Record

Data(y/m/d)	Ver.	Description	Note	page
2010.01.06	00	New		

CONTENTS

- 1. Precautions in use of LCM
- 2. Mechanical Specifications
- 3. Backlight Characteristic
- 4. Absolute Maximum Ratings
- 5. DC Electrical Characteristics
- 6. Optical Characteristics
- 7. InterfacePin Description
- 8. Reliability
- 9. Timing Characteristics

10. Display Command

11. Relationship Between Character Code (DDRAM)

and Character Pattern (CGRAM)

- 12. Character Pattern
- 13. LCM Dimension

1. Precautions in use of LCM

- 1.1 Use Modules
 - 1. When modules switch on or off, after accessing positive supply power with 5 ± 0.5 voltage ,then input signal levels, if signal levels input before supply power becomes stable or switches off, IC circuits off, modules will be damaged, as a result, modules will be damaged.
 - 2. Dot matrix modules are high path –number LCDs, they are largely related to the contrast ,view angle ,driving voltage when displaying , so you should adjust it to get best contrast and view angle, if it is too high , not only displays are effected, but also let life shorted.
 - 3. When using under regulated working temperature below, the display responsiveness it too slow, when using under regulated temperature above, whole display surface turns dark, this is not damaged, when the temperature returns normal, all displays become normal

- 1.2 Module storage
 - 1. Storaging temperature:-30~+80
 - 2. Place in dark sites to avoid strong lights
 - 3. Don't place other thing on their surfaces
 - 4. Packaged in polyer materials (with anti-static electricity layers) and sealed

1.3 Soldering

1. Iron head temperature: 280±10

2. Soldering time: <3-4S

3. Soldering material: eutectic nature, low melting point

4. Don't use acid solder

5. Soldering don't repeat above 3 times

2. Mechanical Specifications

Item	Value	Unit
Number of Characters	8X2	Character
Character Format	5 8 Dots	-
Character Pitch	3.55(W) 5. 94(H)	mm
Character Size	2.96(W) X5.56(H)	mm
Dot size	0.56(W) 0.66(H)	mm
Dot pitch	0.6(W) O. 7(H)	mm
Module dimension	58 (W) 32(H) 13. 5NAX(T)	mm
Active Area	27.81(W) 11. 5(H)	mm
Viewing Area	38(W) X 16(H)	mm
Lcd type	STN Yellow-Green Positive Transflective	
Controller	SPLC708D1-001A	
Duty	1/16	-
Bias	1/5	-
Viewing direction	6 O'clock	-
Backlight	Yellow Green	-
Module	No Connector	

3. Backlight Characteristic

3.1 Electrical / optical specifications

 $Ta = 25^{\circ}C$

1a – 25 C						
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward voltage	$V_{\rm f}$	If=60mA, Yellow Green	3.8	4.2	4.4	V
*Luminous Intensity	$ m I_{v}$	If=60mA, Yellow Green	120	150		Cd/m2
Peak Emission Wavelength	λΡ	If=60mA, Yellow Green	567	572	577	nm
Spectrum Radiation Bandwidth	Δλ	If=60mA, Yellow Green		30		nm
Reverse Current	${ m I}_{ m R}$	VR=5V, Yellow Green			0.7	mA

Note: * Measured at the bare LED back-light unit.

3.2 LED Maximum Operating Range

Item	Symbol	Yellow Green	Unit
Power Dissipation	$P_{\scriptscriptstyle{AD}}$	264	mW
Forward Current	$I_{\scriptscriptstyle F}$	60	mA
Reverse Voltage	$V_{\scriptscriptstyle R}$	5	V

4.Absolute Maximum Ratings

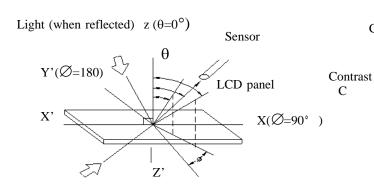
Item	Symbol	Conditions	Min.	Max.	Unit
Power supply Voltage	Vdd	-	-0.3	7.0	V
Input voltage Range	Vin	-	-0.3	VDD+0.3	V
Operating temperature	Topr	-	-20	70	
Storage temperature	Tstg	-	-30	80	
Static electricity	Be sure that you are grounded when handing LCM				

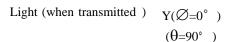
Notes: 1. Exceeding the absolute maximum ratings may cause permanent damage to the device. Functional operation under these conditions is not implied.

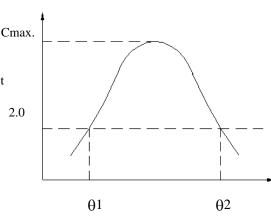
5.DC Electrical Characteristics (Without LED back-light)

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Voltage	$V_{\scriptscriptstyle DD}$		4.5	5.0	5.5	V
Supply Current	$I_{\scriptscriptstyle DD}$	Internal oscillation or external clock (V _{DD} =5.0V,f _{OSC} =270kHz)		1.5	2	mA
Input	$V_{{\scriptscriptstyle IH1}}$		$0.7~\mathrm{V}_{\mathrm{DD}}$		V _{DD}	V
Voltage(1) (except OSC1)	$V_{\scriptscriptstyle{\mathrm{IL}1}}$		-0.3		0.6	
Input	$V_{{ iny IH}2}$		V _{DD} -1		$V_{\scriptscriptstyle DD}$	V
Voltage(2) (OSC1)	$V_{{\scriptscriptstyle IL2}}$				1.0	
Output	V_{OH1}	$I_{OH} = -0.1 \text{mA}$	3.9		$V_{\scriptscriptstyle DD}$	V
Voltage(1) (DB0 to DB7)	$V_{\scriptscriptstyle OL1}$	$I_{OL} = 0.1 \text{mA}$			0.4	
Output	V_{OH2}	$I_o = -40 \mu A$	$0.9V_{\scriptscriptstyle DD}$		$V_{\scriptscriptstyle m DD}$	V
Voltage(2) (DB0 to DB7)	$V_{ m OL2}$	I _o =40μA			0.1V _{DD}	
Voltage Drop	Vd _{COM}	I _o =0.1mA			1	V
	Vd_{SEG}				1	
Input Leakage Current	$ m I_{IKG}$	V_{IN} =0V to V_{DD}	-1		1	μΑ
Input Low Current	${ m I}_{ m IL}$	V_{IN} =0V, V_{DD} =5V (Pull Up)	-50	-125	-250	
Internal Clock (external Rf)	$f_{ m OSC1}$	$Rf=91kO \pm 2\% (V_{DD}=5V)$	190	270	350	kHz
External	$ m f_{osc}$		125	270	410	kHz
Clock	duty		45	50	55	%
	$t_{\scriptscriptstyle R}, t_{\scriptscriptstyle F}$				0.2	μS

LCD Driving	$V_{\scriptscriptstyle LCD}$	V_{DD} - V_{5}	3.0	 10.0	V
Voltage		(1/5,1/4 Bias)			


6.Optical Characteristics

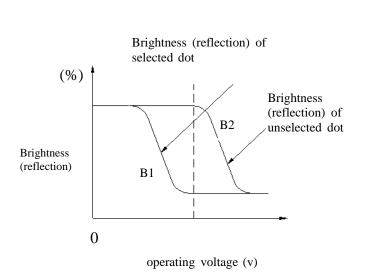

1/16 duty, 1/5 bias, Vop=4.3V, Ta=25

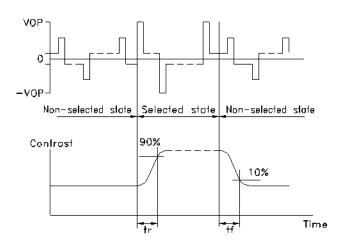

				<i>J</i> ,	/ I	
Item	Symbol	Conditions	Min.	Тур.	Max	Reference
Driving voltage	Vop=VDD-VO			4.3		
Viewing angle	θ	C≥2.0,Ø=0°C	30°	-	-	Notes 1 & 2
Contrast	C	θ=5°, Ø=0°	3.0	-	-	Note 3
Response time(rise)	ton	θ=5°, Ø=0°	-	-	185ms	Note 4
Response time(fall)	toff	θ=5°, Ø=0°	-	-	167ms	Note 4

Note 1: Definition of angles θ and \emptyset

Note 2: Definition of viewing angles $\theta 1$ and $\emptyset 2$

 $\mbox{ viewing angle } \theta \ (\ \ \mbox{fixed})$ Note : Optimum viewing angle with the


naked eye and viewing angle θ at Cmax. Above are not always the same

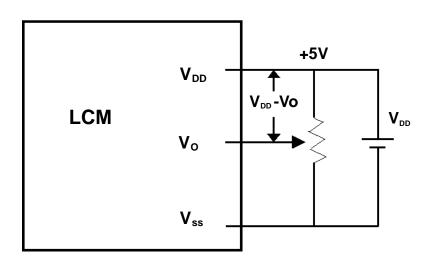

Note 3: Definition of contrast C

Brightness (reflection) of unselected dot (B2)

C =Brightness (reflection) of selected dot (B1)

Note 4: Definition of response time

Note: Measured with a transmissive LCD panel which is displayed 1 cm²


V OPR : Operating voltage $f_{\mbox{\tiny FRM}}$: Frame frequency

t ON : Response time (rise) t_{OFF} : Response time (fall)

7.Interface Pin Description

NO.	Symbol	Function
1	VSS	Ground (0V)
2	VDD	Power supply for Logic circuit
3	VO	Power Supply for Driving the LCD
4	RS	Data / Instruction select
5	R/W	Read / Write select
6	E	Enable signal
7-14	DB0-DB7	Data Bus line

Voltage Generator Circuit

 $V_{\mbox{\tiny DD}}\mbox{-Vo}$: LCD Driving Voltage $V_{\mbox{\tiny R}}$: 10K~20K

8. RELIABILITY

Test item	Test condition	Evaluation and assessment	is:
Operation at high temperature and humidity	40 °C±2 °C 90%RH for 500hours	No abnormalities in functions* and appearance**	
Operation at high temperature	imi6046420° Writing 500 how HPU	No abnormalities in to SPLC7#QMctions* and appearance**	
Heat shock	-20± ~ +60°°C Left for 1 hour at each temperature, transition time 5 min, repeated 10 times tem	No abnormalities in functions* and appearance**	
Low temperature E	-20±2°C for 500 hours	Vihi to abnormalities in functions* and that pearance**	
Vibration Read mode t	Sweep for 1 m at 10 Hz, 55Hz, 10Hz, amplitude 1.5mm 2 hrs each in the liming diagram (Reading Data from SPL X, Y and Z directions	No abnormalities in functions* and c780D1 to appearance**	
Drop shock	Dropped onto a board from a height of 10 cm	No abnormalities in functions* and tappearance**	_
- 1	contrast and display functions	LF LHD1	
** Polarizing filter dete	rioration, other appearance d	efects VILI	
8.1 Liquid crystal paneF%	Profice life	Valid Data VIH1	_
100,000 hours minim	num at 25 °C±10 °C	tc	

8.2 Definition of wanted set (White diffets from MPU to SPLC780D1)

	ntrast becomes 30%		Min.	Limit Typ.	Max.	Unit	Test Condition
Cu	rrent consumption b	ecomes	three tin	ies high	r than ir	iitial _s val	ue _{in E}
Re	markable alignment	deterior	ation occ	curs in L	CD cell	layer	Pin E
	E Rise/Fall Time	te, te	1 - 0		25	ns	Pin E
Ur	E Rise/Fall Time usual operation occ Address Setup Time	urs in dis	splay fun	ctions	-	ns	Pins: RS, R/W, E
	Address Hold Time	t _{HD1}	10	-		ns	Pins: RS, R/W, E
	Data Setup Time	t _{SP2}	40	-		ns	Pins: DB0 - DB7
	Data Hold Time	tuna	10			ns	Pins: DB0 - DB7

9. Timing Characteristics

Characteristics	Symbol		Limit		Unit	Test Condition	
Characteristics	Symbol	Min. Typ.		Max.	Onit	rest Condition	
E Cycle Time	tc	400	-	-	ns	Pin E	
E Pulse Width	t _w	150	-	-	ns	Pin E	
E Rise/Fall Time	t _R , t _F	20	12	25	ns	Pin E	
Address Setup Time	t _{SP1}	30	//2	4 1	ns	Pins: RS, R/W, E	
Address Hold Time	t _{HD1}	10		~ 1/4//	ns	Pins: RS, R/W, E	
Data Output Delay Time	to	.50	-	100	ns	Pins: DB0 - DB7	
Data hold time	PAGE 9	14 5.0	2/10	10%	ns	Pin DB0 - DB7	

10.Display Command

Instructions					Instru	iction	Code				Description	Execution		
											Time			
	RS	R/	DB	DB6	DB5	DB4	DB3	DB2	DB1	DB0		(fosc=		
		W	7									270KHZ)		
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from	1.52ms		
											AC.			

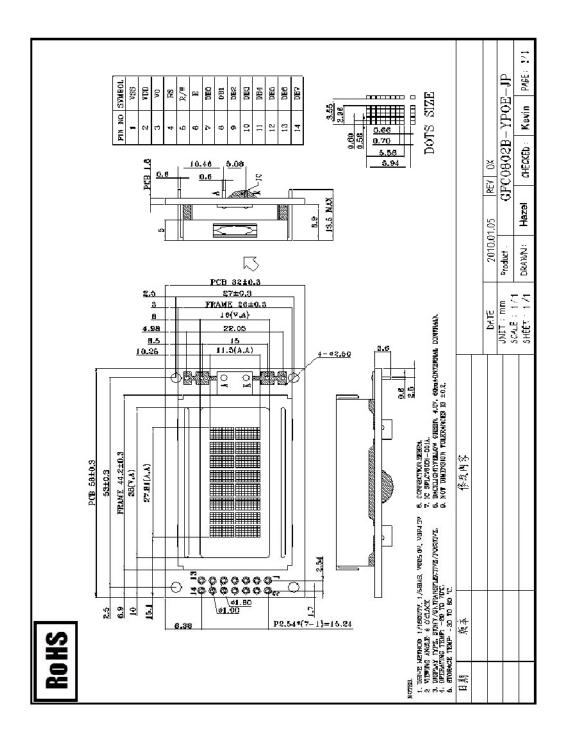
PAGE 10/14

Return Home	0	0	0	0	0	0	0	0	1	×	1.52ms	
											changed.	
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and make shift of entire display enable.	38µs
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	Sets display (D), cursor(C), and blinking of cursor(B) on/off	38µs
Control	0			0	0	1	C/C	D/I			control bit.	20 -
Cursor or Display Shift	U	0	0	U	0	1	S/C	R/L	×	×	Set cursor moving and display shift control bit, and the direction,	38µs
											without changing of DDRAM	
Function Set	0	0	0	0	1	DL	N	F	.,	.,	data. Set interface data length (DL:4 -	38µs
Tunction Set	U	U			1		11	1.	×	×	bit/8-bit), numbers of display line	30μ8
											(N: 1-line/2-line), display font	
											type(F:5*8 dots/5*11 dots)	
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address	38µs
Address											counter.	
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	38µs
Read Busy	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation	0µs
Flag and											or not can be known by reading	1
Address											BF. The contents of address	
											counter can also be read.	
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	38µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	38µs

"x":don't care

 ${\bf 11.}\ Relationship\ between\ Character\ Code (DDRAM)\ and$

Character Pattern(CGRAM)


Character Code (DDRAM data)						-	CGRAM Address							CC	3RA	M Da	ata			Pattern		
D7	D6	D5	D4	D3	D2	D1	D0	A5	A4	А3	A2	A1	A0	P7	P6	P5	P4	Р3	P2	P1	P0	number
0	0	0	0	×	0	0	0	0	0	0	0	0	0	×	×	×	0				0	pattern 1
											0	0	1					0	0	0		
				_							0	1	0					0	0	0		
				•				•			0	1	1									
				•					•		1	0	0		٠			0	0	0		
				•					•		1	0	1		•			0	0	0		
								İ			1	1	0					0	0	0		
											1	1	1				0	0	0	0	0	
•																						
				•							•							-				
0	0	0	0	×	1	1	1	1	1	1	0	0	0	×	×	×		0	0	0		pattern 8
											0	0	1					0	0	0		:
											0	1	0					0	0	0		
											0	1	1				:					
				•					•		1	0	0					0	0	0		
				•					•		1	0	1		٠			0	0	0		
											1	1	0					0	0	0		
											1	1	1				Ö	0	0	0	0	

* "×": dont care

12. Character Pattern

S #1												_				
Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	нцн	HHLL	ннгн	нннг	нннн
LLLL																
LLLH																
LLHL																
LLHH																
LHLL																
LHLH																
LHHL																
гннн																
HLLL																
HLLH																
HLHL																
нгнн																
HHLL																
ннцн																
нннг																
нннн																

13. LCM Dimension

