
SPECIFICATIONS

CUSTOMER	
MODEL NO.	GFC1202B-YPFE-JP
VERSION :	<u> </u>
DATE :	2012.10.18
CERTIFICATION	ON :ROHS

Customer Sign	Approved By	Prepared By	Prepared By

Revision Record

Data(y/m/d)	Ver.	Description	Note	page
2010.06.02	A	Specification released		
2012.10.18	В	Modify VOP 4.4 to 3.85V		

LCM Dimension

CONTENTS

- 1. Precautions in use of LCM
- 2. Mechanical Specifications
- 3. Backlight Characteristic
- 4. Absolute Maximum Ratings
- 5. DC Electrical Characteristics
- 6. Optical Characteristics
- 7. Interface Pin Description

- 8. Reliability
- 9. Timing Characteristics
- 10. Display Command
- 11. Relationship Between Character Code (DDRAM) and Character Pattern (CGRAM)
- 12. Character Pattern

1. Precautions in use of LCM

- 1.1 Use Modules
 - 1. When modules switch on or off, after accessing positive supply power with 5 ± 0.5 voltage ,then input signal levels, if signal levels input before supply power becomes stable or switches off, IC circuits off, modules will be damaged, as a result, modules will be damaged.
 - 2. Dot matrix modules are high path –number LCDs, they are largely related to the contrast ,view angle ,driving voltage when displaying , so you should adjust it to get best contrast and view angle, if it is too high , not only displays are effected, but also let life shorted.
 - 3. When using under regulated working temperature below, the display responsiveness it too slow, when using under regulated temperature above, whole display surface turns dark, this is not damaged, when the temperature returns normal, all displays become normal

- 1.2 Module storage
 - 1. Storaging temperature:-30~+80
 - 2. Place in dark sites to avoid strong lights
 - 3. Don't place other thing on their surfaces
 - 4. Packaged in polyer materials (with anti-static electricity layers) and sealed

1.3 Soldering

1. Iron head temperature: 280±10

2. Soldering time: <3-4S

3. Soldering material: eutectic nature, low melting point

4. Don't use acid solder

5. Soldering don't repeat above 3 times

2. Mechanical Specifications

Item	Value	Unit
Number of Characters	12X2	Character
Character Format	5 8 Dots	-
Character Pitch	3.2(W) 6. 2(H)	mm
Character Size	2.65(W) X5.5(H)	mm
Dot size	0.45(W) O. 6(H)	mm
Dot pitch	0.55(W) O. 7(H)	mm
Module dimension	55.7 (W) 32(H) 12 8NAX(T)	mm
Active Area	37.85(W) 11. 7(H)	mm
Viewing Area	46.7(W) X 17.5(H)	mm
Lcd type	STN Yellow-Green Positive Transflective	
Controller	SPLC708D1-001A	
Duty	1/16	-
Bias	1/5	-
Viewing direction	6 O'clock	-
Backlight	WHITE	-
Module	No Connector	

3. Backlight Characteristic

3.1 Electrical / optical specifications

Ta = 25°C

				9		<u> </u>
Forward voltage	V_{f}	If=40mA,	2.9	3.2	3.6	V
		White			is.	
LED	$I_{\rm v}$	If=40mA,		150		Cd/m2
*Luminous Intensity		White				
Chromaticity	X	If=40mA,	0.26	0.31	0.36	
Coordinate		White				
	у		0.25	0.32	0.37	
Reverse Current	$I_{\scriptscriptstyle R}$	VR=5V, White			0.1	mA

Note: * Measured at the bare LED back-light unit.

3.2 LED Maximum Operating Range

Power Dissipation	$P_{\scriptscriptstyle{ m AD}}$	144	mW
Forward Current	$I_{\scriptscriptstyle F}$	40	mA
Reverse Voltage	$V_{\scriptscriptstyle R}$	5	V

Environmentally Certified (SG 7200 E2008) Line 12 Line

4. Absolute Maximum Ratings

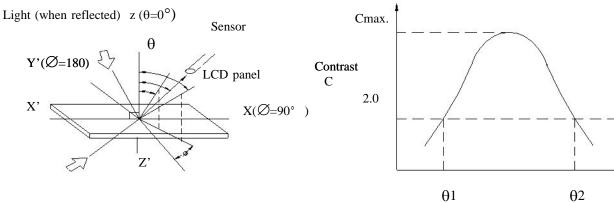
Item	Symbol	Conditions	Min.	Max.	Unit
Power supply Voltage	Vdd	-	-0.3	7.0	V
Input voltage Range	Vin	-	-0.3	VDD+0.3	V
Operating temperature	TOPR	-	-20	70	
Storage temperature	Tstg	-	-30	80	
Static electricity	Be sure that you are grounded when handing LCM				

Notes: 1. Exceeding the absolute maximum ratings may cause permanent damage to the device. Functional operation under these conditions is not implied.

5. DC Electrical Characteristics (Without LED back-light)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Operating Voltage	$V_{\scriptscriptstyle m DD}$		4.5	5.0	5.5	V
Supply Current	$\mathbf{I}_{ ext{DD}}$	Internal oscillation or external clock (V _{DD} =5.0V,f _{OSC} =270kHz)	-	1.5	2	mA
Input	$V_{\text{\tiny IH1}}$		$0.7 V_{DD}$		$V_{\scriptscriptstyle DD}$	V
Voltage(1) (except OSC1)	$V_{\scriptscriptstyle{\mathrm{IL}1}}$		-0.3		0.6	
Input	$V_{\text{IH}2}$		$V_{\rm DD}$ - 1		$V_{\scriptscriptstyle DD}$	V
Voltage(2) (OSC1)	$V_{\rm IL2}$				1.0	
Output	V_{OH1}	$I_{OH} = -0.1 \text{mA}$	3.9		$V_{\scriptscriptstyle m DD}$	V
Voltage(1) (DB0 to DB7)	$V_{\scriptscriptstyle OL1}$	I_{OL} =0.1mA			0.4	
Output	V_{OH2}	I _o =-40 μA	0.9V _{DD}		$V_{\scriptscriptstyle DD}$	V
Voltage(2) (DB0 to DB7)	$V_{ m OL2}$	I _o =40μA			0.1V _{DD}	
Voltage Drop	Vd_{COM}	I _o =0.1mA			1	V
	Vd_{SEG}				1	
Input Leakage Current	${ m I}_{ m IKG}$	$V_{\text{IN}}{=}0V$ to V_{DD}	-1		1	μА

0)80			20	20		
Input Low	$I_{\scriptscriptstyle { m IL}}$	$V_{\text{\tiny IN}}=0$ V, $V_{\text{\tiny DD}}=5$ V	-50	-125	-250	
Current		(Pull Up)				
Internal	f_{OSC1}	$Rf=91kO \pm 2\% \ (V_{DD}=5V)$	190	270	350	kHz
Clock						
(external Rf)						
External	$f_{ m OSC}$		125	270	410	kHz
Clock	duty		45	50	55	%
E	$t_{\scriptscriptstyle R}, t_{\scriptscriptstyle F}$				0.2	μS
LCD Driving	$V_{\scriptscriptstyle LCD}$	V_{DD} - V_5	3.0		10.0	V
Voltage		(1/5,1/4 Bias)				


6. Optical Characteristics

1/16 duty, 1/5 bias, Vop=3.85V, Ta=25

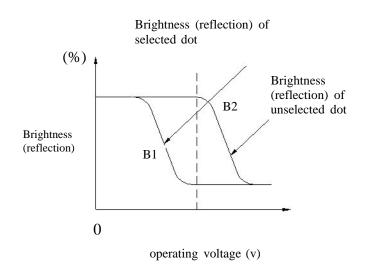
The second secon		No.		_ •	· •	
Item	Symbol	Conditions	Min.	Тур.	Max	Reference
Driving voltage	Vop=VDD-VO			3.85		
Viewing angle	θ	C≥2.0,Ø=0°C	30°	-	-	Notes 1 & 2
Contrast	С	θ=5°, Ø=0°	3.0	-	-	Note 3
Response time(rise)	ton	θ=5°, Ø=0°	-	-	256ms	Note 4
Response time(fall)	toff	θ=5°, Ø=0°	-	-	242ms	Note 4

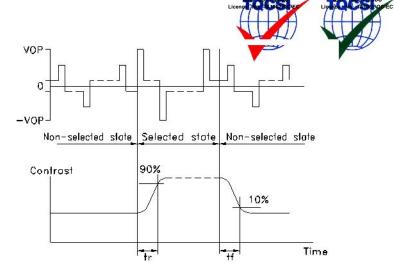
Note 1: Definition of angles θ and \emptyset

Note 2: Definition of viewing angles $\theta 1$ and $\varnothing 2$

Light (when transmitted) $Y(\varnothing=0^{\circ})$ ($\theta=90^{\circ}$)

viewing angle θ (fixed)

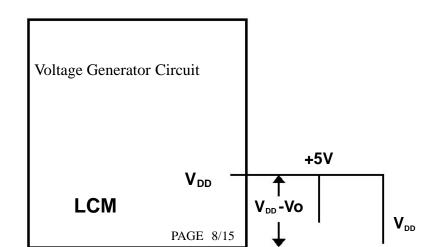

Note: Optimum viewing angle with the naked eye and viewing angle θ at Cmax. Above are not always the same

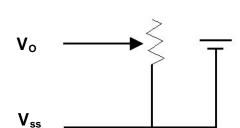

Note 3: Definition of contrast C

Note 4: Definition of response time

Brightness (reflection) of unselected dot (B2)

Brightness (reflection) of selected dot (B1)


Note: Measured with a transmissive LCD panel which is displayed 1 cm²


V $_{\text{OPR}}$: Operating voltage f_{FRM} : Frame frequency

 $t_{\text{ on }}$: Response time (rise) $t_{\text{ off }}$: Response time (fall)

7. Interface Pin Description

NO.	Symbol	Function
1	VSS	Ground (0V)
2	VDD	Power supply for Logic circuit
3	VO	Power Supply for Driving the LCD
4	RS	Data / Instruction select
5	R/W	Read / Write select
6	Е	Enable signal
7-14	DB0-DB7	Data Bus line
15	LED A	Power supply for LED

 $V_{\mbox{\tiny DD}}\mbox{-Vo}$: LCD Driving Voltage $V_{\mbox{\tiny R}}$: 10K~20K

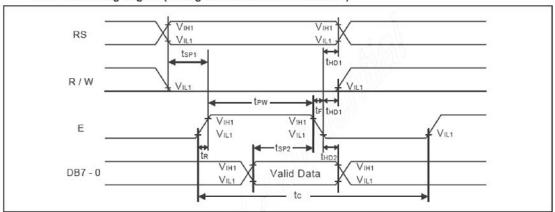
8. RELIABILITY

Test item	Test condition	Evaluation and assessment
Operation at high temperature and humidity	40 °C±2 °C 90%RH for 500hours	No abnormalities in functions* and appearance**
Operation at high temperature	60°C±2°C for 500 hours	No abnormalities in functions* and appearance**
Heat shock	-20± ~ +60°C Left for 1 hour at each temperature, transition time 5 min, repeated 10times	No abnormalities in functions* and appearance**
Low temperature	-20±2°C for 500 hours	No abnormalities in functions* and appearance**
Vibration	Sweep for 1 min at 10 Hz, 55Hz, 10Hz, amplitude 1.5mm 2 hrs each in the X,Y and Z directions	No abnormalities in functions* and appearance**
Drop shock	Dropped onto a board from a height of 10cm	No abnormalities in functions* and appearance**

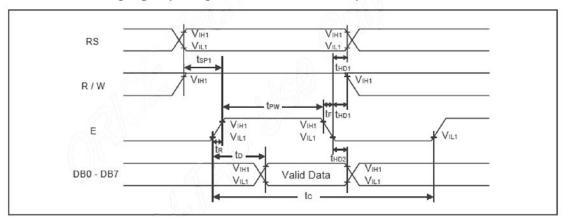
^{*} Dissipation current, contrast and display functions

8.1 Liquid crystal panel service life 100,000 hours minimum at 25 °C±10 °C

^{**} Polarizing filter deterioration, other appearance defects



8.2 Definition of panel service life


- Contrast becomes 30% of initial value
- Current consumption becomes three times higher than initial value
- Remarkable alignment deterioration occurs in LCD cell layer
- Unusual operation occurs in display functions

9. Timing Characteristics

Write mode timing diagram (Writing Data from MPU to SPLC780D1)

Read mode timing diagram (Reading Data from SPLC780D1 to MPU)

Write mode (Writing Data from MPU to SPLC780D1)

Characteristics	Sumb at		Limit		Unit	Test Condition	
Characteristics	Symbol	Min.	Тур.	Max.	Unit		
E Cycle Time	tc	400	120		ns	Pin E	
E Pulse Width	t _{PW}	150		-	ns	Pin E	
E Rise/Fall Time	t _R , t _F	-	-	25	ns	Pin E	
Address Setup Time	t _{SP1}	30	-	-0.00	ns	Pins: RS, R/W, E	
Address Hold Time	t _{HD1}	10		-	ns	Pins: RS, R/W, E	
Data Setup Time	t _{SP2}	40	-	1004	ns	Pins: DB0 - DB7	
Data Hold Time	t _{HD2}	10	-		ns	Pins: DB0 - DB7	

Read mode (Reading Data from SPLC780D1 to MPU)

Characteristics	Sbal		Limit		Unit	Test Condition	
Characteristics	Symbol	Min.	Тур.	Max.	Unit		
E Cycle Time	tc	400	125	2	ns	Pin E	
E Pulse Width	t _w	150	-	-	ns	Pin E	
E Rise/Fall Time	t _R , t _F	- 1	-	25	ns	Pin E	
Address Setup Time	t _{SP1}	30	-	<u> </u>	ns	Pins: RS, R/W, E	
Address Hold Time	t _{HD1}	10	-	1/1/	ns	Pins: RS, R/W, E	
Data Output Delay Time	to	2	- 2	100	ns	Pins: DB0 - DB7	
Data hold time	t _{HD2}	5.0	1/0	W/-	ns	Pin DB0 - DB7	

PAGE 10/15

10. Display Command

Instructions					Instru	ction	Code			Description	Execution Time	
	RS	R/W	DB 7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		(fosc= 270KHZ)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC.	1.52ms
Return Home	0	0	0	0	0	0	0	0	1	×	Set DDRAM address to "00H" from AC and return cursor to it's original position if shifted. The contents of DDRAM are not changed.	1.52ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and make shift of entire display enable.	38µs
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Sets display (D), cursor(C), and blinking of cursor(B) on/off control bit.	38µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	×	×	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	38µs
Function Set	0	0	0	0	1	DL	N	F	×	×	Set interface data length (DL:4 - bit/8-bit), numbers of display line (N: 1-line/2-line), display font type(F:5*8 dots/5*11 dots)	38µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	38µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	38µs
Read Busy Flag and Address	0	1								AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0µs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	38µs

10.								10	10		
Read Data	1	1	D7	D6	D5	D4	D3	D2	D1	D0 Read data from internal RAM	3808
from RAM										(DDRAM/CGRAM).	•

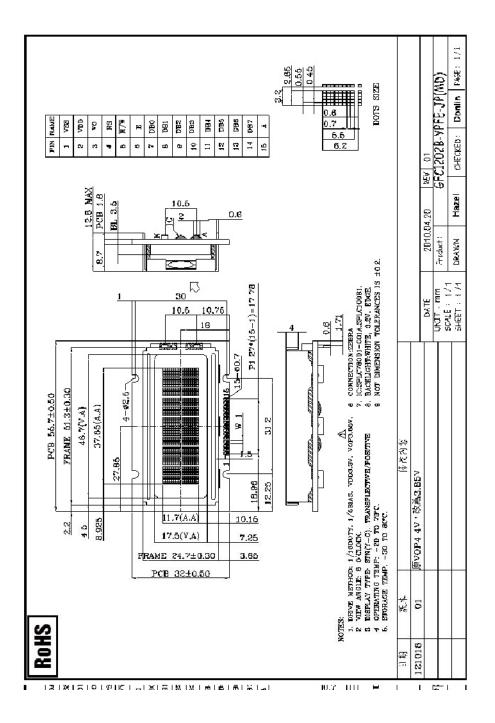
"x":don't care

11. Relationship between Character Code(DDRAM) and Character Pattern(CGRAM)

Figure 1

Ch	агас	ter (Code	(DE	RA	M da	ıta)	(CGR	AM .	Add	res	5	CGRAM Data						Pattern		
D7	D6	D5	D4	D3	D2	D1	D0	A5	A4	A3	A2	A 1	A0	Р7	P6	P5	P4	Р3	P2	P1	P0	number
0	0	0	0	×	0	0	0	0	0	0	0	0	0	×	×	×	0				0	pattern 1
											0	0	1					0	0	0		
											0	1	0					0	0	0		
											0	1	1		٠			5.				
				•					•		1	0	0		•			0	0	0		
				•					*		1	0	1					0	0	0		
											1	1	0					0	0	0		
											1	1	1				0	0	0	0	0	
	***									-								N.Co.				
				•							•						6					
				•							•						ĝ					
0	0	0	0	×	1	1	1	1	1	1	0	0	0	×	×	×		0	0	0		pattern 8
Ü	U	U	Ü	^				•		1	0	0	1	^	^	^		0	0	0		patterno
								ė.			0	1	0					0	0	0		
				•					•		0	1	1		٠		9	U	υ	V		
											1	0	0		•			0	0	0		
				n 7							4	0	1					0	0	0		
											4	1	0					0	0	0		
											1	4	1				0	0	0	0	0	
				-		2000			V. III				91				U	U	U	U		' '×": dont care

12. Character Pattern



Llonor	T															
Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	нілн	ннгг	ннігн	нннг	нннн
LLLL																
LLLH																
LLHL																
LLHH																
LHLL																
LHLH																
LHHL																
гнни																
HLLL																
HLLH																
HLHL																
нгнн																
HHLL																
ннгн																
нннг																
нннн																

